
Automatic Composition

Workflow automation seems to be the buzzword in our industry these days -- and it should be it saves
time and reduces errors. It makes direct mail firms more competitive.

However there is another form of automation often overlooked -- Composition Automation. Automation in
this area also delivers two significant benefits; 1) It saves time -- in a major way, and, 2) Since such
automation is often data dependent, it delivers a very serious competitive edge. That, of course requires
explanation and that is what this document is about. The first example:

N-Up – Just compose front and back sides (if any) of the postcards, choose stock size, click a few radio
buttons (such as “Duplex” and “Interleave” and the rest is done by PSL for you. And it won’t print if you
make a mistake – clicks/paper cost money. Just select N-Up as shown below;

Then compose one or more fronts and backs.

Then go to “Layout” and find that PSL has placed as many cards as it could on the default stock size of
13x19.

A user can, of course change stock size, set batch size, margins, gutters, etc. and PSL
automatically produces a PDF ready for printing in “cut and stack” order. Note that the defaualt
layout is left-right, north-south.

If you override the defaults such that the job won't print correctly -- PSL won't print it!!

Dutch Cut N-Up postcards

This is a variation of N-Up where the user can place the cards on the stock as they see fit sometimes
allowing a better yield. As above the user creates fronts and backs, using a special custom box, which
facilitates copy paste such that the cards are in the order in which they were created, fronts only, backs
follow automatically.

It should be noted that while the small color images are static in this example, they easily could be
drawn from a supporting file of images based on data in the merge file or any supporting files.

Booklets – It's the same idea as N-Up. Just compose your pages, and cover if any, the number
of pages, being based on data of course, will vary as might the number of signatures. And PSL
will layout the signatures with proper imposition for book trimming -- automatically. The user
composes the variable pages, enters some parameters such as paper thickness, and cover issues
(see below), and the booklets are automatically produced.

Paragraphs is an excellent example of Dynamic Content Management

If a project requires assembly of a document composed of paragraphs drawn from a large
library of such paragraphs PSL has a convenient way to do so. The key concept here is that
such paragraphs, composed in a "formattedText box" of course may be formatted as desired
as well as contain variables and (thanks to a series of Value Functions) even static or data
dependent images.

Note that a "paragraph" is merely the
content of a formattedText box -- it
might contain 50 words or a
thousand and one image or ten.

A common requirement for such a
facility would be the "disclaimers
paragraphs" required by states
regarding certain transactions and of
course they vary by state. Another
interesting example would be
descriptions of products that get
matched up with images in data
dependent solicitations.

There are several ways to organize
the paragraphs and associated
Value functions to draw the desired
paragraph to the document. Of
course such services may be mixed
and matched with more standard
page layout methodology.

The library of paragraphs may be
"company wide" or associated with a
specific project. The example shows
one page from a mailing by an
orchestra (square dance band here)
to members in a dozen classes
involving several dozen variables..

Transactional Work -- Invoices and Statements

Composition of tabular information such as commonly found in statements and invoices can be
challenging. PSL's Composition Automation can make it quite straight forward and quick. Here are the
steps involved.

Most commonly data from end users is delivered as a customer file and a transaction file. Often the
transactions appear in the order they occurred -- sometimes known as the "time stamp" order. As well,
often there are supporting files, such as seen in the visa example with a table providing data, such as
manager's pictures or vicinity maps, based on some field in the customer file (such as zip code).
Examples appear below.

The "Merge File" is the customer file.

The "transactions" file in this case is in time stamp order and includes, for each record, an
account number. Consequently, as directed by the "tableBox" for every record in the
customer file, each, of course, having a field name of "account", PSL finds all records in the
transaction file with that account number and prints the contents as a transaction in the
output.

The "Branches" file contains information about branches of a number of these credit union
offices, such as phone mumbers and images of the branch manager. The customer file
contains a "manager" field which is used as a key to bring in manager pictures, phone
numbers and the like for each statement.

There are no limits. A project can have as many files (tables) as needed. Files can be a big as
needed, records can be as long as needed with as many fields as needed.

Furthermore, for the more technical types, things like fonts and colors are data types.

The composition automation tool involved here is the custom box called "tableBox."

Below is an example of the tableBox "at work." As can be seen the tabular part of the statement is
generated by filing out a form. The tableBox performs what old timers might call a "join" function. It
allows designation of the field in the customer file (in this case) to use as a key to search the
transaction file for records associated (in this case) with that account number.

As well it provides tools for formatting and annotating the table.

Of course the usual composition tools help with the material that is not "Tables," and the result
mght be:

Now, it is quite important to understand that what is shown here;

1) This was created with no programming,

2) Thanks to a "Logical Function" invoked from a pull down menu,
there could be as many "page 2s" as needed to make sure the whole table printed,

3) This is a simple example, done entirely without coding, but a bit mis-leading.
Such work often requires coding for such things as white space management,
and the usual last minute customer required "exceptions."

An example involving coding is delivered with the examples as "visa" while this one is
known as "simpleVisa."

Flat Files
Particularly when data arrives from "legacy" main frame systems, the data appears as what we
call a "flat file." Such a file structure commonly has the first 8 bytes represent a record type. Each
record type is defined in a document stating the field names of the data found in certain positions in
the record (think of Hollerith cards.)

PSL has a special and very straightforward method of handling such "flat files."

Sections – This is a real “killer app.” It literally “automatically” handles invoices or statements
where there are separate sections to the bill. For example the example shown from a credit union
in which separate "sections" of the bill represent individual departments with varying billing format
requirements. Another famous example is the medical practice bill in which an individual receives
a monthly bill/statement from several different departments, each formatted differently. This is a
very common requirement not well served by competitors.

This composition automation tool involves the tableBox discussed above when composing each of
the variable sections.

There is likely a separate file format for each department.

As shown below the user identifies and composess the main layout page, then the first page for
each section -- in this case sales, interest, payments and refunds; then composes the overflow
pages (which may automatically be replicated as discussed above) for each of them.

The main page -- here just called "page" -- defines the order in which the sections will appear
in the final document and the depth of such boxes is used to define the minimum space
deemed necessary to start such a section (table).

If there is no data for a particular table it is ignored. Once the user has specified the
"minimum" above PSL handles the white space management automatically.

A rather simple two page "Sections" example is shown below. In the example shipped with PSL one
may see a wide variety of such output -- some many pages long. Again, all the white space
management (in the same category as widows and orphans) was done automatically. No PSL
coding was involved.

Bar Charts are a quite useful example of composition automation in PSL.

Coding of any sort is not required. Simply fill out a form as shown below on the right. The left
part shows just some of the many options available. The table to be filled in is the one for the
selected chart.

While the many options are somewhat obvious, such as using patterns rather than colors, the
automation can easily result in a bar chart as shown below -- done in minutes and completely data
driven. The user need only fill in the table as shown on the previous page.

The coordinate system, after having some parameters set, is automatically generated and suited
to the necessary range of values to be charted. Since in PSL color is a data type.the colors can
even be controlled by data.
In fact most all of the data in the table, as shown to the right, is simply a text "property" and thus
can be entered;

1) Manually entered text, as the ones on the
right are

2) By entry of a field name or names (data),

3) By use of a Value Function, for example
"string functions", or

4) By use of a Value Statement, such as "If"
Statements or "Select" statements.

Pie Charts are quite similar. Both pie charts an bar charts in PSL offer both a broad
gamut of options and an amazing ease of use -- all data driven. Once again, the user fills
in data, as discussed previously with text, data, Field Names, Value Functions or Value
Statements in a pull down menu and PSL automatically creates the pie chart based on
data. Below please find the "table" referred to along with a display of just some of the
options.

